
Journal of Approximation Theory 97, 366�383 (1999)

Minimal Extensions in Tensor Product Spaces

Grzegorz Lewicki

Department of Mathematics, Jagiellonian University,
Reymonta 4, 30-059 Krako� w, Poland

E-mail: lewicki�im.uj.edu.pl

Communicated by Will Light

Received August 4, 1997; accepted in revised form January 9, 1998

Let X, Y be two separable Banach spaces and let V/X and W/Y be finite
dimensional subspaces. Suppose that V/S/X, W/Z/Y and let M # L(S, V ),
N # L(Z, W ). We will prove that if : is a reasonable, uniform crossnorm on X�Y
then

*M�N(V�: W, X�: Y)=*M(V, X ) *N(W, Y).

Here for any Banach space X, V/S/X and M # L(S, V )

*M(V, X )=inf[&P& : P # L(X, V ), P | S=M].

Also some applications of the above mentioned result will be presented. � 1999

Academic Press

1

Let X be a Banach space and let V/X be a linear subspace. An operator
P # L(X, V ) is called a projection if P|V=idV . The set of all projections
from X onto V will be denoted by P(X, V ).

A projection Po # P(X, V ) is called minimal if

&Po&=*(V, X )=inf[&P& : P # P(X, V )]. (1.1)

The problem of finding formulas for minimal projections is related to the
Hahn�Banach Theorem, as well as to the problem of producing a ``good''
linear replacement of an x # X by a certain element from V, because of the
inequality

&x&Px&�&Id&P& dist(x, V )�(1+&P&) dist(x, V ),

where P # P(X, V). For more information about minimal projections the
reader is referred to references included in this paper.
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An analogous problem can be posed in the case of a fixed action
M # L(S, V) where V/S/X. In this case we want to find an extension of
M onto X having the smallest norm, which is clearly the operator version
of the Hahn�Banach Theorem. As in the case of projections we denote

PM(X, V )=[P # L(X, V ) : P |S=M] (1.2)

and

*M(V, X )=inf[&P& : P # PM(X, V)]. (1.3)

An extension P # PM(X, V ) is called a minimal extension if

&P&=*M(V, X ). (1.4)

If S=V and M # L(V ) then by the absolute extension constant we denote
a number

*M(V )=sup[*M(V, X ) : V/X]. (1.5)

If M=idV , *idV
(V, X ) is called the relative projection constant and *idV

(V )
the absolute projection constant. In the sequel we will write for brevity
*(V, X) instead of *idV

(V, X ) and *(V ) instead of *idV
(V ).

The aim of this paper is to investigate to the following.

Problem 1.1. Let X, Y be a pair of Banach spaces and let V (W resp.)
be a finite-dimensional subspace of X (Y resp.). Suppose that V/S/X
and W/Z/Y. Let M # L(S, V ) and N # L(Z, W ) be given. What is the
relationship between the constants *M�N(V�: W, X�: Y), *M(V, X ), and
*N(W, Y) where : is a reasonable crossnorm on X�Y?

We give an answer to this problem in Theorem 2.5. Moreover, in
Theorem 2.6 we show that if : is a reasonable, uniform crossnorm then the
tensor product of two minimal actions forms a minimal action for M�N.

In Section 3 we present some applications of Theorems 2.5 and 2.6,
mainly to the case of projections and X=Y=C[0, 1] or X=Y=
Lp[&1, 1]. We also reprove Theorem 3 from [24] in a simple manner.

Now we introduce some notation and some basic facts which will be of
use later.

Definition 1.2. Let X, Y be two Banach spaces and let x1 , ..., xm # X,
y1 , ..., ym # Y. Then L=�m

i=1 xi � yi can be interpreted as an operator
from X* to Y defined by

Lf = :
m

i=1

f (xi) yi . (1.6)
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So X�Y/L(X*, Y) (we put into one equivalence class all expressions of
type �m

i=1 xi � y i if they define the same operator).

Definition 1.3. Let : be a norm on X�Y. Then X�: Y means the
completion of X�Y with respect to :.

Definition 1.4. Let : be a norm on X�Y. : is a crossnorm iff

:(x� y)=&x& } &y& (1.7)

for x # X, y # Y.
: is reasonable if

:*( f�g) :=sup { :
m

i=1

f (xi) g( yi) : : \ :
m

i=1

xi � yi+=1=
=& f & } &g& (1.8)

for any f # X* and g # Y*.
: is uniform if for any A # L(X ), B # L(Y),

&A�B&:�&A& } &B&, (1.9)

where (A�B)(x� y)=Ax�By for x # X, y # Y, and

&A�B&: :=sup {: \(A�B) \ :
m

i=1

x i � y i++ : : \ :
m

i=1

xi � yi+=1= .

By X�* Y we denote the injective tensor product of X and Y, i.e., the
completion of X�Y with respect to the norm * defined by

* \ :
n

i=1

xi � yi+=sup {" :
n

i=1

f (xi) y i" : f # S*, & f &=1= . (1.10)

Analogously, by X�# Y we denote the projective tensor product of X and
Y. Here the norm # is given by

#(z)=inf { :
n

i=1

&xi& } &yi & : xi # X, yi # Y, z= :
n

i=1

xi � y i= . (1.11)

Observe that both * and # are uniform, reasonable crossnorms (see, e.g.,
[13, Lemma 1.6, 1.8, and 1.12]). We also need the following
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Theorem 1.5 [13, Corollary 1.14]. Let S, T be compact, Hausdorff
spaces. Then

C(S)�* C(T )=C(S_T ). (1.12)

Here for any compact, Hausdorff set T, C(T ) denotes the space of all
real (or complex) valued functions defined on T equipped with the
supremum norm.

Theorem 1.6 [13, Corollary 1.16]. If S and T are _-finite measure
spaces, then

L1(S)�# L1(T )=L1(S_T ). (1.13)

For a Banach space X, by SX we denote its unit sphere and by ext(SX)
the set of extreme points of SX . We also need

Definition 1.7 (see [7]). (x**, x*) # SX**_SX* will be called an
extremal pair for Q # L(X ) if

(Q**x**)(x*)=&Q&, (1.14)

where Q**: X** � X** is the second adjoint extension of Q to X**. The
set of all extremal pairs for Q will be denoted by E(Q).

The main tool in our investigations will be the following

Theorem 1.8 (see [7, Theorems 1, 2 and Ex. B]). Let V be a finite-
dimensional subspace of a Banach space X (we consider real and complex
cases). Let S be a linear subspace of X with V/S/X. Then P # PM(X, V )
is a minimal extension if and only if there exists a positive, total mass one,
Boreal measure + supported on E(P) such that the operator EP : X � X**
defined by

EP(z)=|
E(P)

x*(z) x** d+(x**, x*) (1.15)

takes V into S. Here M # L(S, V) is a fixed action and the set E(P) is
equipped with the Cartesian product topology induced by the weak*
topologies on X** and X*.
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2

We start from a well known

Lemma 2.1. Let X, Y be finite-dimensional Banach spaces. Then
(X�Y)*=X*�Y*.

Proof. Note that any element �m
i=1 fi �g i defines a linear function on

X�Y by

\ :
m

i=1

f i �gi+ (x� y)= :
m

i=1

fi (x) gi ( y).

Since dim(X�Y)=dim(X) dim(Y)=dim(X*�Y*), the proof is complete.

Lemma 2.2. If X1 is a dense subspace in a Banach space X and Y1 is a
dense subspace in a Banach space Y, then X1 �Y1 is dense in X�: Y for
any crossnorm : on X�Y.

Proof. Take any x # X, y # Y. Let xn # X1 , yn # Y1 be so chosen that
&xn&x& � 0 and &yn& y& � 0. Then

:(x� y&xn � yn)�:(x� ( y& yn))+:((x&xn)� yn)

=&x& } &y& yn&+&yn& } &x&xn &.

Since ( yn) is a bounded sequence, :(xn � yn&x� y) � 0. The proof is
complete.

Lemma 2.3. Let : be a reasonable crossnorm on X�Y. If V is a linear
subspace of X and W is a linear subspace of Y then : is a reasonable
crossnorm on V�W.

Proof. It is clear that : is a crossnorm on V�W. Now suppose that
there exist f # V* and g # W* such that

:*( f�g)=sup [( f�g) z : z # V�W, :(z)=1]>& f & } &g&.

Let F (G resp.) be the Hahn�Banach extension of f to X (g to Y resp.).
Note that

:*(F�G)=sup[(F�G) z : z # X�Y, :(z)=1]

�sup[(F�G) z : z # V�W, :(z)=1]

>& f & } &g&=&F& } &G&,

a contradiction.
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Lemma 2.4. Let X, Y be finite-dimensional Banach spaces. Let A be a
closed subset of SX _SX* and let B be a closed subset of SY _SY* . Let +A

(+B resp.) denote a finite Borel measure on A (on B resp.). Let EA, B be an
operator from X�Y into itself defined by

EA, B(a�b)=|
A_B

(x*� y*)(a�b)(x� y) d(+A(x, x*)�+B( y, y*)).

Then

EA, B=EA �EB ,

where EA(a)=�A x*(a) x d+A(x, x*) and EB(b)=�B y*(b) y d+B( y, y*).

Proof. Take a # X and b # Y. To prove that EA, B(a�b)=
EA(a)�EB(b), it is necessary to show that for any F # (X�Y )*

F(EA, B(a�b))=F(EA(a)�EB(b)). (2.1)

Since X and Y are finite dimensional, by Lemma 2.1, it is necessary to
prove (2.1) for F= f � g, where f # X* and g # Y*. Note that

( f � g)(EA, B(a�b))

=( f � g) \|A_B
(x*(a) y*(b))(x� y)+ d(+A �+B)

=|
A_B

x*(a) y*(b) f (x) g( y) d(+A �+B)

=(by Fubini's Theorem) \|A
x*(a) f (x) d+A+\|B

y*(b) g( y) d+B+
= f (EA(a)) g(EB(b))=( f � g)(EA(a)�EB(b)),

as required. The proof is complete.

Theorem 2.5. Let X, Y be separable Banach spaces (complex or real ).
Suppose V/X and W/Y are finite dimensional linear subspaces. Let V/S
and W/Z, where S is a subspace of X and Z is a subspace of Y, and let
M # L(S, V), N # L(Z, V ) be given. If : is a reasonable crossnorm on
X�Y then

*M�N(V�: W, X�: Y )�*M(V, X ) *N(W, Y ). (2.2)
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Proof. First suppose that X, Y are finite dimensional. Let P1 #
PM(X, V ) and P2 # PN(Y, W ) be minimal extensions. Put

A=E(P1) and B=E(P2) (2.3)

(see Definition 1.7). By Theorem 1.8, there exists a Borel measure +A (+B

resp.) supported on A (B resp.) of total mass one, such that

EA(V )/S and EB(W )/Z, (2.4)

where EA and EB are the same as in Lemma 2.4. Let us define a linear
functional T on L(X�Y ) by

T(L)=|
A_B

(x*� y*)(L(x� y)) d(+A �+B). (2.5)

First we show that &T&�1. To do this, take any L # L(X�Y ). Note that

|T(L)|�|
A_B

|(x*� y*)(L(x� y))| d(+A �+B)

�|
A_B

:*(x*� y*) &L& :(x� y) d(+A �+B)�&L&,

since : is a reasonable crossnorm and (+A �+B)(A_B)=1.
Now, let

D=cl(span[ f ( } )(z): z # V�W, f # (X�Y )*, f |S�Z=0]). (2.6)

We show that T |D =0. To do this, take L # D, L= f ( } )(v�w). Then

T(L)=|
A_B

(x*� y*)(L(x� y)) d(+A �+B)

=|
A_B

(x*� y*)( f (x� y)(v�w)) d(+A �+B)

=|
A_B

f ((x*v)( y*w)(x� y)) d(+A �+B)

= f (EA, B(v�w))

=(by Lemma 2.4) f (EA(v)�EB(w))

=0 (by (2.4)).
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Consequently,

*M�N(V�W, X�Y )=dist(P1 �P2 , D)�T(P1 �P2)

=(by (2.3)) &P1& } &P2 &

=*M(V, W ) *N(W, Y),

as required.
Now suppose that X, Y are separable Banach spaces of infinite dimen-

sion. Let V/X, W/Y be finite-dimensional subspaces. Suppose that S is
a subspace of X and Z is a subspace of Y such that V/S/X, W/Z/Y.
Since X and Y are separable, X=cl(��

n=1 Xn) and Y=cl(��
n=1 Yn), where

Xn , Yn are finite-dimensional subspaces. Taking Xn+V instead of Xn

and Yn+W instead of Yn we can assume that V/Xn and W/Yn

for n=1, 2, .... Now let M # L(S, V ) and N # L(Z, W ) be fixed. Put for
n=1, 2, ..., Mn=M | Xn

, Nn=N |Yn
, Sn=S & Xn , and Zn=Z & Yn . By

Lemma 2.3, : is a reasonable crossnorm on Xn �Yn for n=1, 2, .... Hence,
by the first part of the proof applied to, Mn , Nn , Sn , and Zn ,

*Mn �Nn
(V�: W, Xn �: Yn)�*Mn

(V, Xn) *Nn
(W, Yn) (2.7)

for n=1, 2, .... By Lemma 2.2, X�: Y=cl(��
n=1 (Xn �: Yn)). By the sepa-

rability of X and Y, reasoning as in [19, Theorem 3.1.6, p. 85], we have

*M(V, X )=lim
n

*Mn
(V, Xn), *N(W, Y )=lim

n
*Nn

(W, Yn)

and

*M�N(V�: W, X�: Y )=lim
n

*Mn �Nn
(V�: W, Xn �: Yn).

Hence, taking the limit over n on the both sides of (2.7) we get

*M�N(V�: W, X�: Y )�*M(V, X ) *N(W, Y ),

which completes the proof.

Theorem 2.6. Let X, Y, S, Z, V, W, M, and N be as in Theorem 2.5.
Assume that : is a reasonable, uniform crossnorm. Then

*M�N(V�: W, X�: Y )=*M(V, X ) *N(W, Y ).
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Proof. Let P1 # PM(X, V ) and P2 # PN(Y, W) be minimal extensions of
M and N resp. Then P1 �P2 # PM�N(V�: W, X�: Y ). Since : is uniform

&P1 �P2&:�&P1 & &P2&=*M(V, X ) *N(W, Y ).

The proof is complete.

By the induction argument one can easily deduce from Theorems 2.5 and
2.6 the following

Theorem 2.7. Let for i=1, ..., n, Xi be a Banach space and let Vi be a
finite dimensional subspace. Suppose that Vi /Si /Xi and let
Mi # L(Si , Vi) be given. If : is a reasonable crossnorm on }n

i=1 Xi then

*}n
i=1

Mi \}
n

i=1

Vi , }
n

i=1

Xi+� `
n

i=1

*Mi
(Vi , Xi). (2.8)

If : is a reasonable, uniform crossnorm then

*}n
i=1

Mi \}
n

i=1

Vi , }
n

i=1

Xi+= `
n

i=1

*Mi
(Vi , Xi). (2.9)

Remark 2.8. By [12, Theorem 3, p. 371] it is impossible to generalize
Theorem 2.5 to the case of V being an arbitrary subspace of X and W being
an arbitrary subspace of Y.

Remark 2.9. The constant *m�N(V�: W, X�: Y ) does not depend on
: for M, N, V, W, X and Y being fixed. Here : is a uniform reasonable
crossnorm.

Remark 2.10. In [22, Corollary 14.1, p. 135] has been shown that for
any pair of finite-dimensional Banach spaces V and W

*(V�* W)=*(V ) *(W).

3

In this section we present some applications of Theorems 2.5�2.7. First
we restrict ourselves to the case of minimal projections. By Theorems 1.5,
1.6, and 2.6 it is easy to prove

Theorem 3.1. Let S, T be compact, metrizable Hausdorff spaces. If V is
a finite-dimensional subspace of C(S) and W is a finite-dimensional subspace
of C(T) then

*(V�* W, C(S)�* C(T))=*(V, C(S)) *(W, C(T )). (3.1)
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If S, T are _-finite, separable measure spaces and V (W resp.) is a finite-
dimensional subspace of L1(S), (L1(T ) resp.) then

*(V�# W, L1(S)�# L1(T))=*(V, L1(S)) *(W, L1(T )). (3.2)

Now, let Pn denote the space of all polynomials of one real variable of
degree �n and Pn, m the space of all polynomials of two variables of degree
�n with respect to the first variable and degree �m with respect to the
second variable. By the proof of Theorems 1.5 and 1.6 (see [13, pp. 9�11])
we have

Pn �* Pm=Pn, m (3.3)

and

Pn �# Pm=Pn, m . (3.4)

Here in (3.3) we consider Pn and Pm as subspaces of C[&1, 1] and Pn, m

as a subspace of C[&1, 1]2. In (3.4), Pn and Pm are subspaces of
L1[&1, 1] and Pn, m is a subspace of L1[&1, 1]2. Hence, by Theorem 3.1,
if we know the projection constants *(Pn , C[&1, 1]) or *(Pn , L1[&1, 1])
for the case of one variable, we know the relative projection constant of
Pn, m with respect to the supremum norm or to the L1 -norm. Also, by
Theorem 2.6, if Q1 , Q2 are minimal projections in the case of one variable,
the tensor product of them is a minimal projection. Now, we present some
examples when relative projection constants as well as formulas for mini-
mal projections are known in the case of one variable in the L1 or the
supremum norms.

Example 3.2. It is well known that

*(P1 , C[&1, 1])=1.

Moreover, the interpolating projection with nodes in &1 and 1 is a
minimal projection.

Example 3.3. In [4] the minimal projection from C[&1, 1] onto
quadratics has been determined. In this case

*(P2 , C[&1, 1])=1.2201730 } } }

Example 3.4. In [11] the minimal projection from L1[&1, 1] onto
the lines P1 has been found. In this case

*(P1 , L1[&1, 1])=1.22040 } } }
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Example 3.5. In [9] the minimal projections from L1[&1, 1] onto Pn

for n=2, 3, 4, 5 have been determined. The corresponding values of the
relative projections constants are

*(P2 , L1[&1, 1])=1.36149 } } }

*(P3 , L1[&1, 1])=1.46184 } } }

*(P4 , L1[&1, 1])=1.54874 } } }

*(P5 , L1[&1, 1])=1.61031 } } }

Example 3.6 [25]. Let n be an odd number. In this paper a minimal
projection from Xn=Span[tn, t2, t, 1] onto P2 has been found in the case
of the supremum norm on the interval [&1, 1]. By Theorem 3.1 and the
previous considerations

*(P2, 2 , Xn �* Xm)=*(P2 , Xn) *(P2 , Xm),

where in the space Xn �* Xm we consider the supremum norm on
[&1, 1]2.

Example 3.7. In [24, Theorem 3] the following result has been shown,

\4(ln n&ln ln n)
?2 +1�3+\4(ln m&ln ln m)

?2 +1�3+
�*(Pn, m , C[&1, 1]2)

�&T1
n �* T1

m&

�\4 ln(2n+1)
?2 +1+\4 ln(2m+1)

?2 +1+
and

\4(ln n&ln ln n)
?2 +1�4+\4(ln m&ln ln m)

?2 +1�4+
�*(Pn, m , L1[&1, 1]2)

�&T2
n �# T2

m&

�\4 ln(2n+3)
?2 +1+\4 ln(2m+3)

?2 +1+ ,
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where T i
n denotes the n th partial sum operator of the Chebyshev expansion

of the i th kind, i=1, 2. Theorem 3.1 permits us to reprove this result in a
very simple manner. It is necessary to apply Theorems 1 and 2 from [24],
where the necessary estimates for the case of one variable have been
proved. Also, since

lim
n

ln(2n+1)+?2�4
ln n&ln ln n+?2�12

=lim
n

ln(2n+3)+?2�4
ln n&ln ln n+?2�16

=1

by [24, Theorem 3], Theorem 4 from [24] is proved without applying
[24, Lemmas 1 and 2].

Now we discuss the case X=l (n)
1 and Y=l (m)

1 . Since by Theorem 1.6,

l (n)
1 �# l (m)

1 =l (nm)
1 ,

if we know the formulas for minimal projections for some class of sub-
spaces of l (n)

1 , then we know the formulas for minimal projections for tensor
products of the spaces from this class with respect to the # norm. The same
remark applies to the case of subspaces of l (n)

� (here the * norm should be
used). Note that the formulas for minimal projections onto hyperplanes of
l (n)
1 have been found in [1]. See also [2, 3] for some formulas in the case

of symmetric subspaces of l (n)
1 . In [1] the formulas for minimal projections

onto hyperplanes of l (n)
� have been established. See also [18�20] where the

case of subspaces of codimension two has been discussed. Also in [8] for-
mulas for minimal projections onto some two-dimensional symmetric sub-
spaces of l (6)

� have been presented.

Example 3.8. Let Q3 be a minimal projection from P3 onto P2 found
in [25] (see Example 3.6). Put V=P2 , S=P3 , and M=Q3 . In [15] the
constant *M(V, P4) has been calculated. Hence by Theorem 2.6 we have the
formula for *M�M(P2, 2 , P4, 4).

Example 3.9. In [10], it has been shown that if V is a two-dimen-
sional, real normed space having unconditional basis v1 , v2 and M # L(V )
is such that Mv i=di vi then

*M(V )�( |d1 |+|d2 |+- d 2
1&|d1 d2 |+d 2

2 )�3. (3.5)

Note that by [6],

*M(V)=*M(V, L1[&1, 1]).
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Also in [10, p. 174] the space VM for which we have the equality in (3.5)
has been described. Hence, by Theorem 2.6 for any M, N as above

*M�N(VM �# VN , L1[&1, 1]2)

=*M(VM , L1[&1, 1]) *N(VN , L1[&1, 1]).

Now we restrict ourselves to the case of Lp-spaces. We start with

Definition 3.10 (see, e.g., [13, Definition 1.45, p. 27]). Let X, Y be
Banach spaces. For 1�p�� the p-nuclear norm of z # X�Y is defined by

:p(z)=inf {\ :
n

i=1

&xi& p+
1�p

aq( y1 , ..., yn) : z= :
n

i=1

xi � y i= . (3.6)

Here q is so chosen that 1�p+1�q=1 and

aq( y1 , ..., yn)=sup {\ :
n

i=1

| f ( yi)| q+
1�q

: f # SX*= .

If q=�, then

aq( y1 , ..., yn)=sup [ max
1�i�n

| f ( yi)| : f # SX*].

By [13, Lemma 1.46, p. 27] the p-nuclear norm is a reasonable crossnorm.
Observe that by [13, Lemma 1.44, p. 27] for any B # L(Y )

aq(By1 , ..., Byn)�&B& aq( y1 , ..., yn).

Hence :p is a uniform, reasonable crossnorm. By a result of [23] we have

Lp(S)�:p
Lp(T )=Lp(S_T ), (3.7)

where S and T are finite measure spaces. This enables us to apply
Theorem 2.6 in the case of Lp -spaces. Until the end of this section S will
stand for a finite separable measure space and let for every n # N, (S)n be
a partition of S. Without loss, we can assume that each Z # (S)n is a finite
sum of elements from (S)n+1. Let Xn be the space spanned by characteristic
functions of the sets from (S)n. Hence Xn /Xn+1 . We can choose (S)n in
such a way that Lp(S)=cl(��

n=1 Xn) for 1�p<�. Note that, by Jensen's
inequality for every n # N, a projection Pn # P(Lp(S), Xn) defined by

Pnx= :
Z # (S)n \|Z

x(s) d+(s)�+(Z)+ /Z (3.8)

has norm one.
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Lemma 3.11. If f # Xn and g # Lp(S) then

|
S

f (t) g(t) d+(t)=| f (t)(Pk g)(t) d+(t)

for any k�n.

Proof. Note that for k�n

|
S

f (t)(Pk g)(t) d+(t)

=|
S { :

Z # (S)k _|Z
g(s) d+(s)�+(Z)&(/Z)(t)= f (t) d+(t)

= :
Z # (S)k \|Z _|Z

f (s) g(s) d+(s)�+(Z)&(/Z)(t) d+(t)+
= :

Z # (S)k
|

Z
g(s) f (s) d+(s)=|

S
f (t) g(t) d+(t),

as required.

Lemma 3.12. Let f1 , ..., fk be linearly independent, simple, measurable
functions on S. Fix 1< p<�. Let V=�k

i=1 ker( fi), where ker fi denotes
the kernel of fi . Put

Vn=V & Xn . (3.9)

Then

*(V, Lp(S))=lim
n

*(Vn , Lp(S)).

Proof. Let P # P(Lp(S), V). Take Qn=Pn b P. Since f i are simple func-
tions, modifying Xn , if necessary, we can assume that fi # Xno

for
i=1, 2, ..., k. By Lemma 3.11, for any x # Lp(S), (Pn b P) x # Vn for n�no .
Since for any x # Vn , Qn x=x, Qn # P(Lp(S), Vn). Hence, since &Pn &=1,

lim sup
n

*(Vn , Lp(S))�*(V, Lp(S)).

To prove the converse let Ln # P(Lp(S), Vn) be a minimal projection and
let (xk) be a basis of X=��

n=1 Xn . Since 1< p<�, by the diagonal
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argument and the S2 mulian Theorem, we can assume that for fixed k, Lnxk

converges weakly to the element which we denote by Pxk . Hence for any
x # X

&Px&="P \ :
l

i=1

ai xi +"=&lim
n

Lnx&

�lim inf
n

&Ln x&�lim inf
n

*(Vn , Lp(S)) &x&.

Consequently, by the density of X in Lp(S), we can extend P onto all of
Lp(S). By the Mazur theorem, Px # V for any x # X, and Pv=v for any
v # ��

n=1 Vn . By Lemma 3.11, cl(��
n=1 Vn)=V. Hence P # P(Lp(S), V) and

consequently,

*(V, Lp(S))�lim inf
n

*(Vn , Lp(S)),

which completes the proof.

Theorem 3.13. Let f1 , ..., fk (g1 , ..., gl resp.) be a collection of linearly
independent, simple measurable functions on S (T resp.). Fix 1< p<�. Put
V=�k

i=1 ker( f i) and W=� l
i=1 ker(gi). Then

*(cl(V�W ), Lp(S)�:p
Lp(T ))=*(V, Lp(S)) *(W, Lp(T)).

Proof. For simplicity, let U=Lp(S)�:p
Lp(T ) and Z=cl(V�W ),

where the closure is taken with respect to the :p -norm. Without loss, we
also can assume that S=T. Let Q1 # P(Lp(S), V ) and Q2 # P(Lp(S), W )
be minimal projections. (By [14], minimal projections exist in our case.)
Since Q1 �:p

Q2 # P(U, Z) and :p is a uniform crossnorm,

*(Z, U )�*(V, Lp(S)) *(W, Lp(S)).

To prove the converse, suppose that

*(Z, U )<*(V, Lp(S)) *(W, Lp(S)). (3.10)

Let Q # P(U, Z) be a minimal projection. Without loss, we can assume that
the spaces Xn are so chosen that f j and gi # Xno

for j=1, ..., k and i=1, ..., l.
Put for n # N

Ln=(Pn �:p
Pn) b Q. (3.11)
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Note that, by Lemma 3.11, for any x # U and n�no Lnx # Wn (see (3.9)).
Also for any z # Vn �Wn , Lnz=z. This shows that Ln # P(U, Vn �Wn).
By (3.10), since &Pn �:p

Pn&�&Pn&2=1,

*(Vn �Wn , U )�*(Z, U)<*(V, Lp(S)) *(W, Lp(S)). (3.12)

By Theorem 2.6 applied to the :p -norm and Lemma 3.12,

lim
n

*(Vn �Wn , U )=lim
n

(*(Vn , Lp(S)) *(Wn , Lp(S)))

=*(V, Lp(S)) *(W, Lp(S)),

a contradiction with (3.12). The proof is complete.

Since the space Lp(S)�:p
Lp(T) is linearly isometric to Lp(S_T ),

Theorem 3.13 permits us to calculate or estimate the relative projection
constant for a class of subspaces of Lp(S_T) of infinite dimension and
codimension provided we know the value or estimate for *(V, Lp(S)) and
*(W, Lp(T )). Note that in [16] the relative projection constant onto any
hyperplane of Lp[0, 1] has been calculated. In fact, by a result of Rolewicz
(see [21, Theorem II.7.5, p. 83; 26]), since Lp[0, 1] is an almost isotropic
space, the relative projection constant onto any hyperplane is the same and
it is equal to

max
t # [0, 1]

(t p&1+(1&t) p&1)1�p (tq&1+(1&t)q&1)1�q, (3.13)

where q is so chosen that 1�p+1�q=1. Also in [17] it has been shown
that the number from (3.13) is a lower bound of the relative projection
constant of any rich subspace of Lp[0, 1]. Note that by [17, Theorem 2],
any subspace of finite codimension in Lp[0, 1] is rich.

At the end of this paper we present a method of constructing various
uniform crossnorms on X�Y.

Proposition 3.14. Let n # N and let & }&n be a norm on Rn satisfying the
order preserving condition, i.e., &(x1 , ..., xn)&n�&( y1 , ..., yn)&n provided
|xi |�| yi | for i=1, ..., n. If :1 , ..., :n are uniform crossnorms on X�Y then
a function

:(z)=&(:1(z), ..., :n(z))&n �&(1, 1, ..., 1)&n

is a uniform crossnorm on X�Y.

The proof of Proposition 3.14 is straightforward, so we omit it.
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Remark 3.15. By Theorem 2.7, all the results from Section 3 concerning
the tensor product of two Banach spaces hold true for the case of the
tensor product of n Banach spaces X1 , ..., Xn .
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