Minimal Extensions in Tensor Product Spaces

Grzegorz Lewicki
Department of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
E-mail: lewicki@im.uj.edu.pl
Communicated by Will Light

Received August 4, 1997; accepted in revised form January 9, 1998

Abstract

Let X, Y be two separable Banach spaces and let $V \subset X$ and $W \subset Y$ be finite dimensional subspaces. Suppose that $V \subset S \subset X, W \subset Z \subset Y$ and let $M \in \mathscr{L}(S, V)$, $N \in \mathscr{L}(Z, W)$. We will prove that if α is a reasonable, uniform crossnorm on $X \otimes Y$ then

$$
\lambda_{M \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right)=\lambda_{M}(V, X) \lambda_{N}(W, Y) .
$$

Here for any Banach space $X, V \subset S \subset X$ and $M \in \mathscr{L}(S, V)$

$$
\lambda_{M}(V, X)=\inf \left\{\|P\|: P \in \mathscr{L}(X, V),\left.P\right|_{S}=M\right\}
$$

Also some applications of the above mentioned result will be presented. © 1999
Academic Press

1

Let X be a Banach space and let $V \subset X$ be a linear subspace. An operator $P \in \mathscr{L}(X, V)$ is called a projection if $\left.P\right|_{V}=\mathrm{id}_{V}$. The set of all projections from X onto V will be denoted by $\mathscr{P}(X, V)$.

A projection $P_{o} \in \mathscr{P}(X, V)$ is called minimal if

$$
\begin{equation*}
\left\|P_{o}\right\|=\lambda(V, X)=\inf \{\|P\|: P \in \mathscr{P}(X, V)\} . \tag{1.1}
\end{equation*}
$$

The problem of finding formulas for minimal projections is related to the Hahn-Banach Theorem, as well as to the problem of producing a "good" linear replacement of an $x \in X$ by a certain element from V, because of the inequality

$$
\|x-P x\| \leqslant\|\operatorname{Id}-P\| \operatorname{dist}(x, V) \leqslant(1+\|P\|) \operatorname{dist}(x, V),
$$

where $P \in \mathscr{P}(X, V)$. For more information about minimal projections the reader is referred to references included in this paper.

[^0]An analogous problem can be posed in the case of a fixed action $M \in \mathscr{L}(S, V)$ where $V \subset S \subset X$. In this case we want to find an extension of M onto X having the smallest norm, which is clearly the operator version of the Hahn-Banach Theorem. As in the case of projections we denote

$$
\begin{equation*}
\mathscr{P}_{M}(X, V)=\left\{P \in \mathscr{L}(X, V):\left.P\right|_{S}=M\right\} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{M}(V, X)=\inf \left\{\|P\|: P \in \mathscr{P}_{M}(X, V)\right\} . \tag{1.3}
\end{equation*}
$$

An extension $P \in \mathscr{P}_{M}(X, V)$ is called a minimal extension if

$$
\begin{equation*}
\|P\|=\lambda_{M}(V, X) . \tag{1.4}
\end{equation*}
$$

If $S=V$ and $M \in \mathscr{L}(V)$ then by the absolute extension constant we denote a number

$$
\begin{equation*}
\lambda_{M}(V)=\sup \left\{\lambda_{M}(V, X): V \subset X\right\} . \tag{1.5}
\end{equation*}
$$

If $M=\mathrm{id}_{V}, \lambda_{\mathrm{id}_{V}}(V, X)$ is called the relative projection constant and $\lambda_{\mathrm{id}_{V}}(V)$ the absolute projection constant. In the sequel we will write for brevity $\lambda(V, X)$ instead of $\lambda_{\mathrm{id}_{V}}(V, X)$ and $\lambda(V)$ instead of $\lambda_{\mathrm{id}_{V}}(V)$.

The aim of this paper is to investigate to the following.
Problem 1.1. Let X, Y be a pair of Banach spaces and let V (W resp.) be a finite-dimensional subspace of X (Y resp.). Suppose that $V \subset S \subset X$ and $W \subset Z \subset Y$. Let $M \in \mathscr{L}(S, V)$ and $N \in \mathscr{L}(Z, W)$ be given. What is the relationship between the constants $\lambda_{M \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right), \lambda_{M}(V, X)$, and $\lambda_{N}(W, Y)$ where α is a reasonable crossnorm on $X \otimes Y$?

We give an answer to this problem in Theorem 2.5. Moreover, in Theorem 2.6 we show that if α is a reasonable, uniform crossnorm then the tensor product of two minimal actions forms a minimal action for $M \otimes N$.

In Section 3 we present some applications of Theorems 2.5 and 2.6, mainly to the case of projections and $X=Y=C[0,1]$ or $X=Y=$ $L_{p}[-1,1]$. We also reprove Theorem 3 from [24] in a simple manner.

Now we introduce some notation and some basic facts which will be of use later.

Definition 1.2. Let X, Y be two Banach spaces and let $x_{1}, \ldots, x_{m} \in X$, $y_{1}, \ldots, y_{m} \in Y$. Then $L=\sum_{i=1}^{m} x_{i} \otimes y_{i}$ can be interpreted as an operator from X^{*} to Y defined by

$$
\begin{equation*}
L f=\sum_{i=1}^{m} f\left(x_{i}\right) y_{i} . \tag{1.6}
\end{equation*}
$$

So $X \otimes Y \subset \mathscr{L}\left(X^{*}, Y\right)$ (we put into one equivalence class all expressions of type $\sum_{i=1}^{m} x_{i} \otimes y_{i}$ if they define the same operator).

Definition 1.3. Let α be a norm on $X \otimes Y$. Then $X \otimes_{\alpha} Y$ means the completion of $X \otimes Y$ with respect to α.

Definition 1.4. Let α be a norm on $X \otimes Y . \alpha$ is a crossnorm iff

$$
\begin{equation*}
\alpha(x \otimes y)=\|x\| \cdot\|y\| \tag{1.7}
\end{equation*}
$$

for $x \in X, y \in Y$.
α is reasonable if

$$
\begin{align*}
\alpha^{*}(f \otimes g) & :=\sup \left\{\sum_{i=1}^{m} f\left(x_{i}\right) g\left(y_{i}\right): \alpha\left(\sum_{i=1}^{m} x_{i} \otimes y_{i}\right)=1\right\} \\
& =\|f\| \cdot\|g\| \tag{1.8}
\end{align*}
$$

for any $f \in X^{*}$ and $g \in Y^{*}$.
α is uniform if for any $A \in \mathscr{L}(X), B \in \mathscr{L}(Y)$,

$$
\begin{equation*}
\|A \otimes B\|_{\alpha} \leqslant\|A\| \cdot\|B\|, \tag{1.9}
\end{equation*}
$$

where $(A \otimes B)(x \otimes y)=A x \otimes B y$ for $x \in X, y \in Y$, and

$$
\|A \otimes B\|_{\alpha}:=\sup \left\{\alpha\left((A \otimes B)\left(\sum_{i=1}^{m} x_{i} \otimes y_{i}\right)\right): \alpha\left(\sum_{i=1}^{m} x_{i} \otimes y_{i}\right)=1\right\} .
$$

By $X \otimes_{\lambda} Y$ we denote the injective tensor product of X and Y, i.e., the completion of $X \otimes Y$ with respect to the norm λ defined by

$$
\begin{equation*}
\lambda\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)=\sup \left\{\left\|\sum_{i=1}^{n} f\left(x_{i}\right) y_{i}\right\|: f \in S^{*},\|f\|=1\right\} . \tag{1.10}
\end{equation*}
$$

Analogously, by $X \otimes_{\gamma} Y$ we denote the projective tensor product of X and Y. Here the norm γ is given by

$$
\begin{equation*}
\gamma(z)=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\| \cdot\left\|y_{i}\right\|: x_{i} \in X, y_{i} \in Y, z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} . \tag{1.11}
\end{equation*}
$$

Observe that both λ and γ are uniform, reasonable crossnorms (see, e.g., [13, Lemma 1.6, 1.8, and 1.12]). We also need the following

Theorem 1.5 [13, Corollary 1.14]. Let S, T be compact, Hausdorff spaces. Then

$$
\begin{equation*}
C(S) \otimes_{\lambda} C(T)=C(S \times T) \tag{1.12}
\end{equation*}
$$

Here for any compact, Hausdorff set $T, C(T)$ denotes the space of all real (or complex) valued functions defined on T equipped with the supremum norm.

Theorem 1.6 [13, Corollary 1.16]. If S and T are σ-finite measure spaces, then

$$
\begin{equation*}
L_{1}(S) \otimes_{\gamma} L_{1}(T)=L_{1}(S \times T) \tag{1.13}
\end{equation*}
$$

For a Banach space X, by S_{X} we denote its unit sphere and by $\operatorname{ext}\left(S_{X}\right)$ the set of extreme points of S_{X}. We also need

Definition 1.7 (see [7]). $\left(x^{* *}, x^{*}\right) \in S_{X^{* *}} \times S_{X^{*}}$ will be called an extremal pair for $Q \in \mathscr{L}(X)$ if

$$
\begin{equation*}
\left(Q^{* *} x^{* *}\right)\left(x^{*}\right)=\|Q\|, \tag{1.14}
\end{equation*}
$$

where $Q^{* *}: X^{* *} \rightarrow X^{* *}$ is the second adjoint extension of Q to $X^{* *}$. The set of all extremal pairs for Q will be denoted by $\mathscr{E}(Q)$.

The main tool in our investigations will be the following

Theorem 1.8 (see [7, Theorems 1, 2 and Ex. B]). Let V be a finitedimensional subspace of a Banach space X (we consider real and complex cases). Let S be a linear subspace of X with $V \subset S \subset X$. Then $P \in \mathscr{P}_{M}(X, V)$ is a minimal extension if and only if there exists a positive, total mass one, Boreal measure μ supported on $\mathscr{E}(P)$ such that the operator $E_{P}: X \rightarrow X^{* *}$ defined by

$$
\begin{equation*}
E_{P}(z)=\int_{\mathscr{\delta}(P)} x^{*}(z) x^{* *} d \mu\left(x^{* *}, x^{*}\right) \tag{1.15}
\end{equation*}
$$

takes V into S. Here $M \in \mathscr{L}(S, V)$ is a fixed action and the set $\mathscr{E}(P)$ is equipped with the Cartesian product topology induced by the weak* topologies on $X^{* *}$ and X^{*}.

We start from a well known
Lemma 2.1. Let X, Y be finite-dimensional Banach spaces. Then $(X \otimes Y)^{*}=X^{*} \otimes Y^{*}$.

Proof. Note that any element $\sum_{i=1}^{m} f_{i} \otimes g_{i}$ defines a linear function on $X \otimes Y$ by

$$
\left(\sum_{i=1}^{m} f_{i} \otimes g_{i}\right)(x \otimes y)=\sum_{i=1}^{m} f_{i}(x) g_{i}(y) .
$$

Since $\operatorname{dim}(X \otimes Y)=\operatorname{dim}(X) \operatorname{dim}(Y)=\operatorname{dim}\left(X^{*} \otimes Y^{*}\right)$, the proof is complete.
Lemma 2.2. If X_{1} is a dense subspace in a Banach space X and Y_{1} is a dense subspace in a Banach space Y, then $X_{1} \otimes Y_{1}$ is dense in $X \otimes_{\alpha} Y$ for any crossnorm \propto on $X \otimes Y$.

Proof. Take any $x \in X, y \in Y$. Let $x_{n} \in X_{1}, y_{n} \in Y_{1}$ be so chosen that $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|y_{n}-y\right\| \rightarrow 0$. Then

$$
\begin{aligned}
\alpha\left(x \otimes y-x_{n} \otimes y_{n}\right) & \leqslant \alpha\left(x \otimes\left(y-y_{n}\right)\right)+\alpha\left(\left(x-x_{n}\right) \otimes y_{n}\right) \\
& =\|x\| \cdot\left\|y-y_{n}\right\|+\left\|y_{n}\right\| \cdot\left\|x-x_{n}\right\| .
\end{aligned}
$$

Since $\left(y_{n}\right)$ is a bounded sequence, $\alpha\left(x_{n} \otimes y_{n}-x \otimes y\right) \rightarrow 0$. The proof is complete.

Lemma 2.3. Let α be a reasonable crossnorm on $X \otimes Y$. If V is a linear subspace of X and W is a linear subspace of Y then α is a reasonable crossnorm on $V \otimes W$.

Proof. It is clear that α is a crossnorm on $V \otimes W$. Now suppose that there exist $f \in V^{*}$ and $g \in W^{*}$ such that

$$
\alpha^{*}(f \otimes g)=\sup \{(f \otimes g) z: z \in V \otimes W, \alpha(z)=1\}>\|f\| \cdot\|g\| .
$$

Let F (G resp.) be the Hahn-Banach extension of f to X (g to Y resp.). Note that

$$
\begin{aligned}
\alpha^{*}(F \otimes G) & =\sup \{(F \otimes G) z: z \in X \otimes Y, \alpha(z)=1\} \\
& \geqslant \sup \{(F \otimes G) z: z \in V \otimes W, \alpha(z)=1\} \\
& >\|f\| \cdot\|g\|=\|F\| \cdot\|G\|,
\end{aligned}
$$

a contradiction.

Lemma 2.4. Let X, Y be finite-dimensional Banach spaces. Let A be a closed subset of $S_{X} \times S_{X^{*}}$ and let B be a closed subset of $S_{Y} \times S_{Y^{*}}$. Let μ_{A} (μ_{B} resp.) denote a finite Borel measure on A (on B resp.). Let $E_{A, B}$ be an operator from $X \otimes Y$ into itself defined by

$$
E_{A, B}(a \otimes b)=\int_{A \times B}\left(x^{*} \otimes y^{*}\right)(a \otimes b)(x \otimes y) d\left(\mu_{A}\left(x, x^{*}\right) \otimes \mu_{B}\left(y, y^{*}\right)\right) .
$$

Then

$$
E_{A, B}=E_{A} \otimes E_{B},
$$

where $E_{A}(a)=\int_{A} x^{*}(a) x d \mu_{A}\left(x, x^{*}\right)$ and $E_{B}(b)=\int_{B} y^{*}(b) y d \mu_{B}\left(y, y^{*}\right)$.
Proof. Take $a \in X$ and $b \in Y$. To prove that $E_{A, B}(a \otimes b)=$ $E_{A}(a) \otimes E_{B}(b)$, it is necessary to show that for any $F \in(X \otimes Y)^{*}$

$$
\begin{equation*}
F\left(E_{A, B}(a \otimes b)\right)=F\left(E_{A}(a) \otimes E_{B}(b)\right) . \tag{2.1}
\end{equation*}
$$

Since X and Y are finite dimensional, by Lemma 2.1, it is necessary to prove (2.1) for $F=f \otimes g$, where $f \in X^{*}$ and $g \in Y^{*}$. Note that

$$
\begin{aligned}
(f \otimes & g)\left(E_{A, B}(a \otimes b)\right) \\
& =(f \otimes g)\left(\int_{A \times B}\left(x^{*}(a) y^{*}(b)\right)(x \otimes y)\right) d\left(\mu_{A} \otimes \mu_{B}\right) \\
& =\int_{A \times B} x^{*}(a) y^{*}(b) f(x) g(y) d\left(\mu_{A} \otimes \mu_{B}\right) \\
& =(\text { by Fubini's Theorem })\left(\int_{A} x^{*}(a) f(x) d \mu_{A}\right)\left(\int_{B} y^{*}(b) g(y) d \mu_{B}\right) \\
& =f\left(E_{A}(a)\right) g\left(E_{B}(b)\right)=(f \otimes g)\left(E_{A}(a) \otimes E_{B}(b)\right),
\end{aligned}
$$

as required. The proof is complete.

Theorem 2.5. Let X, Y be separable Banach spaces (complex or real). Suppose $V \subset X$ and $W \subset Y$ are finite dimensional linear subspaces. Let $V \subset S$ and $W \subset Z$, where S is a subspace of X and Z is a subspace of Y, and let $M \in \mathscr{L}(S, V), N \in \mathscr{L}(Z, V)$ be given. If α is a reasonable crossnorm on $X \otimes Y$ then

$$
\begin{equation*}
\lambda_{M \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right) \geqslant \lambda_{M}(V, X) \lambda_{N}(W, Y) . \tag{2.2}
\end{equation*}
$$

Proof. First suppose that X, Y are finite dimensional. Let $P_{1} \in$ $\mathscr{P}_{M}(X, V)$ and $P_{2} \in \mathscr{P}_{N}(Y, W)$ be minimal extensions. Put

$$
\begin{equation*}
A=\mathscr{E}\left(P_{1}\right) \quad \text { and } \quad B=\mathscr{E}\left(P_{2}\right) \tag{2.3}
\end{equation*}
$$

(see Definition 1.7). By Theorem 1.8, there exists a Borel measure $\mu_{A}\left(\mu_{B}\right.$ resp.) supported on A (B resp.) of total mass one, such that

$$
\begin{equation*}
E_{A}(V) \subset S \quad \text { and } \quad E_{B}(W) \subset Z, \tag{2.4}
\end{equation*}
$$

where E_{A} and E_{B} are the same as in Lemma 2.4. Let us define a linear functional T on $\mathscr{L}(X \otimes Y)$ by

$$
\begin{equation*}
T(L)=\int_{A \times B}\left(x^{*} \otimes y^{*}\right)(L(x \otimes y)) d\left(\mu_{A} \otimes \mu_{B}\right) . \tag{2.5}
\end{equation*}
$$

First we show that $\|T\| \leqslant 1$. To do this, take any $L \in \mathscr{L}(X \otimes Y)$. Note that

$$
\begin{aligned}
|T(L)| & \leqslant \int_{A \times B}\left|\left(x^{*} \otimes y^{*}\right)(L(x \otimes y))\right| d\left(\mu_{A} \otimes \mu_{B}\right) \\
& \leqslant \int_{A \times B} \alpha^{*}\left(x^{*} \otimes y^{*}\right)\|L\| \alpha(x \otimes y) d\left(\mu_{A} \otimes \mu_{B}\right) \leqslant\|L\|,
\end{aligned}
$$

since α is a reasonable crossnorm and $\left(\mu_{A} \otimes \mu_{B}\right)(A \times B)=1$.
Now, let

$$
\begin{equation*}
\mathscr{D}=\operatorname{cl}\left(\operatorname{span}\left\{f(\cdot)(z): z \in V \otimes W, f \in(X \otimes Y)^{*},\left.f\right|_{S \otimes Z}=0\right\}\right) . \tag{2.6}
\end{equation*}
$$

We show that $\left.T\right|_{\mathscr{D}}=0$. To do this, take $L \in \mathscr{D}, L=f(\cdot)(v \otimes w)$. Then

$$
\begin{aligned}
T(L) & =\int_{A \times B}\left(x^{*} \otimes y^{*}\right)(L(x \otimes y)) d\left(\mu_{A} \otimes \mu_{B}\right) \\
& =\int_{A \times B}\left(x^{*} \otimes y^{*}\right)(f(x \otimes y)(v \otimes w)) d\left(\mu_{A} \otimes \mu_{B}\right) \\
& =\int_{A \times B} f\left(\left(x^{*} v\right)\left(y^{*} w\right)(x \otimes y)\right) d\left(\mu_{A} \otimes \mu_{B}\right) \\
& =f\left(E_{A, B}(v \otimes w)\right) \\
& =\left(\text { by Lemma 2.4) } f\left(E_{A}(v) \otimes E_{B}(w)\right)\right. \\
& =0 \quad(\text { by }(2.4)) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\lambda_{M \otimes N}(V \otimes W, X \otimes Y) & =\operatorname{dist}\left(P_{1} \otimes P_{2}, \mathscr{D}\right) \geqslant T\left(P_{1} \otimes P_{2}\right) \\
& =(\operatorname{by}(2.3))\left\|P_{1}\right\| \cdot\left\|P_{2}\right\| \\
& =\lambda_{M}(V, W) \lambda_{N}(W, Y),
\end{aligned}
$$

as required.
Now suppose that X, Y are separable Banach spaces of infinite dimension. Let $V \subset X, W \subset Y$ be finite-dimensional subspaces. Suppose that S is a subspace of X and Z is a subspace of Y such that $V \subset S \subset X, W \subset Z \subset Y$. Since X and Y are separable, $X=\operatorname{cl}\left(\cup_{n=1}^{\infty} X_{n}\right)$ and $Y=\operatorname{cl}\left(\bigcup_{n=1}^{\infty} Y_{n}\right)$, where $X_{n}, \quad Y_{n}$ are finite-dimensional subspaces. Taking $X_{n}+V$ instead of X_{n} and $Y_{n}+W$ instead of Y_{n} we can assume that $V \subset X_{n}$ and $W \subset Y_{n}$ for $n=1,2, \ldots$. Now let $M \in \mathscr{L}(S, V)$ and $N \in \mathscr{L}(Z, W)$ be fixed. Put for $n=1,2, \ldots, M_{n}=\left.M\right|_{X_{n}}, N_{n}=\left.N\right|_{Y_{n}}, S_{n}=S \cap X_{n}$, and $Z_{n}=Z \cap Y_{n}$. By Lemma 2.3, α is a reasonable crossnorm on $X_{n} \otimes Y_{n}$ for $n=1,2, \ldots$. Hence, by the first part of the proof applied to, M_{n}, N_{n}, S_{n}, and Z_{n},

$$
\begin{equation*}
\lambda_{M_{n} \otimes N_{n}}\left(V \otimes_{\alpha} W, X_{n} \otimes_{\alpha} Y_{n}\right) \geqslant \lambda_{M_{n}}\left(V, X_{n}\right) \lambda_{N_{n}}\left(W, Y_{n}\right) \tag{2.7}
\end{equation*}
$$

for $n=1,2, \ldots$. By Lemma 2.2, $X \otimes_{\alpha} Y=\operatorname{cl}\left(\cup_{n=1}^{\infty}\left(X_{n} \otimes_{\alpha} Y_{n}\right)\right)$. By the separability of X and Y, reasoning as in [19, Theorem 3.1.6, p. 85], we have

$$
\lambda_{M}(V, X)=\lim _{n} \lambda_{M_{n}}\left(V, X_{n}\right), \quad \lambda_{N}(W, Y)=\lim _{n} \lambda_{N_{n}}\left(W, Y_{n}\right)
$$

and

$$
\lambda_{M \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right)=\lim _{n} \lambda_{M_{n} \otimes N_{n}}\left(V \otimes_{\alpha} W, X_{n} \otimes_{\alpha} Y_{n}\right) .
$$

Hence, taking the limit over n on the both sides of (2.7) we get

$$
\lambda_{M \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right) \geqslant \lambda_{M}(V, X) \lambda_{N}(W, Y),
$$

which completes the proof.

Theorem 2.6. Let X, Y, S, Z, V, W, M, and N be as in Theorem 2.5. Assume that α is a reasonable, uniform crossnorm. Then

$$
\lambda_{M \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right)=\lambda_{M}(V, X) \lambda_{N}(W, Y) .
$$

Proof. Let $P_{1} \in \mathscr{P}_{M}(X, V)$ and $P_{2} \in \mathscr{P}_{N}(Y, W)$ be minimal extensions of M and N resp. Then $P_{1} \otimes P_{2} \in \mathscr{P}_{M \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right)$. Since α is uniform

$$
\left\|P_{1} \otimes P_{2}\right\|_{\alpha} \leqslant\left\|P_{1}\right\|\left\|P_{2}\right\|=\lambda_{M}(V, X) \lambda_{N}(W, Y)
$$

The proof is complete.
By the induction argument one can easily deduce from Theorems 2.5 and 2.6 the following

Theorem 2.7. Let for $i=1, \ldots, n, X_{i}$ be a Banach space and let V_{i} be a finite dimensional subspace. Suppose that $V_{i} \subset S_{i} \subset X_{i}$ and let $M_{i} \in \mathscr{L}\left(S_{i}, V_{i}\right)$ be given. If α is a reasonable crossnorm on $\otimes_{i=1}^{n} X_{i}$ then

$$
\begin{equation*}
\lambda_{\bigotimes_{i=1}^{n} M_{i}}\left(\bigotimes_{i=1}^{n} V_{i}, \otimes_{i=1}^{n} X_{i}\right) \geqslant \prod_{i=1}^{n} \lambda_{M_{i}}\left(V_{i}, X_{i}\right) . \tag{2.8}
\end{equation*}
$$

If \propto is a reasonable, uniform crossnorm then

$$
\begin{equation*}
\lambda_{\otimes_{i=1}^{n} M_{i}}\left(\bigotimes_{i=1}^{n} V_{i}, \bigotimes_{i=1}^{n} X_{i}\right)=\prod_{i=1}^{n} \lambda_{M_{i}}\left(V_{i}, X_{i}\right) . \tag{2.9}
\end{equation*}
$$

Remark 2.8. By [12, Theorem 3, p. 371] it is impossible to generalize Theorem 2.5 to the case of V being an arbitrary subspace of X and W being an arbitrary subspace of Y.

Remark 2.9. The constant $\lambda_{m \otimes N}\left(V \otimes_{\alpha} W, X \otimes_{\alpha} Y\right)$ does not depend on α for M, N, V, W, X and Y being fixed. Here α is a uniform reasonable crossnorm.

Remark 2.10. In [22, Corollary 14.1, p. 135] has been shown that for any pair of finite-dimensional Banach spaces V and W

$$
\lambda\left(V \otimes_{\lambda} W\right)=\lambda(V) \lambda(W)
$$

In this section we present some applications of Theorems 2.5-2.7. First we restrict ourselves to the case of minimal projections. By Theorems 1.5, 1.6 , and 2.6 it is easy to prove

Theorem 3.1. Let S, T be compact, metrizable Hausdorff spaces. If V is a finite-dimensional subspace of $C(S)$ and W is a finite-dimensional subspace of $C(T)$ then

$$
\begin{equation*}
\lambda\left(V \otimes_{\lambda} W, C(S) \otimes_{\lambda} C(T)\right)=\lambda(V, C(S)) \lambda(W, C(T)) \tag{3.1}
\end{equation*}
$$

If S, T are σ-finite, separable measure spaces and V (W resp.) is a finitedimensional subspace of $L_{1}(S),\left(L_{1}(T)\right.$ resp.) then

$$
\begin{equation*}
\lambda\left(V \otimes_{\gamma} W, L_{1}(S) \otimes_{\gamma} L_{1}(T)\right)=\lambda\left(V, L_{1}(S)\right) \lambda\left(W, L_{1}(T)\right) . \tag{3.2}
\end{equation*}
$$

Now, let P_{n} denote the space of all polynomials of one real variable of degree $\leqslant n$ and $P_{n, m}$ the space of all polynomials of two variables of degree $\leqslant n$ with respect to the first variable and degree $\leqslant m$ with respect to the second variable. By the proof of Theorems 1.5 and 1.6 (see [13, pp. 9-11]) we have

$$
\begin{equation*}
P_{n} \otimes_{\lambda} P_{m}=P_{n, m} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n} \otimes_{\gamma} P_{m}=P_{n, m} \tag{3.4}
\end{equation*}
$$

Here in (3.3) we consider P_{n} and P_{m} as subspaces of $C[-1,1]$ and $P_{n, m}$ as a subspace of $C[-1,1]^{2}$. In (3.4), P_{n} and P_{m} are subspaces of $L_{1}[-1,1]$ and $P_{n, m}$ is a subspace of $L_{1}[-1,1]^{2}$. Hence, by Theorem 3.1, if we know the projection constants $\lambda\left(P_{n}, C[-1,1]\right)$ or $\lambda\left(P_{n}, L_{1}[-1,1]\right)$ for the case of one variable, we know the relative projection constant of $P_{n, m}$ with respect to the supremum norm or to the L_{1}-norm. Also, by Theorem 2.6, if Q_{1}, Q_{2} are minimal projections in the case of one variable, the tensor product of them is a minimal projection. Now, we present some examples when relative projection constants as well as formulas for minimal projections are known in the case of one variable in the L_{1} or the supremum norms.

Example 3.2. It is well known that

$$
\lambda\left(P_{1}, C[-1,1]\right)=1 .
$$

Moreover, the interpolating projection with nodes in -1 and 1 is a minimal projection.

Example 3.3. In [4] the minimal projection from $C[-1,1]$ onto quadratics has been determined. In this case

$$
\lambda\left(P_{2}, C[-1,1]\right)=1.2201730 \cdots
$$

Example 3.4. In [11] the minimal projection from $L_{1}[-1,1]$ onto the lines P_{1} has been found. In this case

$$
\lambda\left(P_{1}, L_{1}[-1,1]\right)=1.22040 \cdots
$$

Example 3.5. In [9] the minimal projections from $L_{1}[-1,1]$ onto P_{n} for $n=2,3,4,5$ have been determined. The corresponding values of the relative projections constants are

$$
\begin{aligned}
& \lambda\left(P_{2}, L_{1}[-1,1]\right)=1.36149 \cdots \\
& \lambda\left(P_{3}, L_{1}[-1,1]\right)=1.46184 \cdots \\
& \lambda\left(P_{4}, L_{1}[-1,1]\right)=1.54874 \cdots \\
& \lambda\left(P_{5}, L_{1}[-1,1]\right)=1.61031 \cdots
\end{aligned}
$$

Example 3.6 [25]. Let n be an odd number. In this paper a minimal projection from $X_{n}=\operatorname{Span}\left[t^{n}, t^{2}, t, 1\right]$ onto P_{2} has been found in the case of the supremum norm on the interval $[-1,1]$. By Theorem 3.1 and the previous considerations

$$
\lambda\left(P_{2,2}, X_{n} \otimes_{\lambda} X_{m}\right)=\lambda\left(P_{2}, X_{n}\right) \lambda\left(P_{2}, X_{m}\right),
$$

where in the space $X_{n} \otimes_{\lambda} X_{m}$ we consider the supremum norm on $[-1,1]^{2}$.

Example 3.7. In [24, Theorem 3] the following result has been shown,

$$
\begin{aligned}
& \left(\frac{4(\ln n-\ln \ln n)}{\pi^{2}}+1 / 3\right)\left(\frac{4(\ln m-\ln \ln m)}{\pi^{2}}+1 / 3\right) \\
& \leqslant \lambda\left(P_{n, m}, C[-1,1]^{2}\right) \\
& \leqslant\left\|T_{n}^{1} \otimes_{\lambda} T_{m}^{1}\right\| \\
& \quad \leqslant\left(\frac{4 \ln (2 n+1)}{\pi^{2}}+1\right)\left(\frac{4 \ln (2 m+1)}{\pi^{2}}+1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\frac{4(\ln n-\ln \ln n)}{\pi^{2}}+1 / 4\right)\left(\frac{4(\ln m-\ln \ln m)}{\pi^{2}}+1 / 4\right) \\
& \leqslant \lambda\left(P_{n, m}, L_{1}[-1,1]^{2}\right) \\
& \leqslant\left\|T_{n}^{2} \otimes_{\gamma} T_{m}^{2}\right\| \\
& \leqslant\left(\frac{4 \ln (2 n+3)}{\pi^{2}}+1\right)\left(\frac{4 \ln (2 m+3)}{\pi^{2}}+1\right),
\end{aligned}
$$

where T_{n}^{i} denotes the nth partial sum operator of the Chebyshev expansion of the i th kind, $i=1,2$. Theorem 3.1 permits us to reprove this result in a very simple manner. It is necessary to apply Theorems 1 and 2 from [24], where the necessary estimates for the case of one variable have been proved. Also, since

$$
\lim _{n} \frac{\ln (2 n+1)+\pi^{2} / 4}{\ln n-\ln \ln n+\pi^{2} / 12}=\lim _{n} \frac{\ln (2 n+3)+\pi^{2} / 4}{\ln n-\ln \ln n+\pi^{2} / 16}=1
$$

by [24, Theorem 3], Theorem 4 from [24] is proved without applying [24, Lemmas 1 and 2].

Now we discuss the case $X=l_{1}^{(n)}$ and $Y=l_{1}^{(m)}$. Since by Theorem 1.6,

$$
l_{1}^{(n)} \otimes_{\gamma} l_{1}^{(m)}=l_{1}^{(n m)},
$$

if we know the formulas for minimal projections for some class of subspaces of $l_{1}^{(n)}$, then we know the formulas for minimal projections for tensor products of the spaces from this class with respect to the γ norm. The same remark applies to the case of subspaces of $l_{\infty}^{(n)}$ (here the λ norm should be used). Note that the formulas for minimal projections onto hyperplanes of $l_{1}^{(n)}$ have been found in [1]. See also [2,3] for some formulas in the case of symmetric subspaces of $l_{1}^{(n)}$. In [1] the formulas for minimal projections onto hyperplanes of $l_{\infty}^{(n)}$ have been established. See also [18-20] where the case of subspaces of codimension two has been discussed. Also in [8] formulas for minimal projections onto some two-dimensional symmetric subspaces of $l_{\infty}^{(6)}$ have been presented.

Example 3.8. Let Q_{3} be a minimal projection from P_{3} onto P_{2} found in [25] (see Example 3.6). Put $V=P_{2}, S=P_{3}$, and $M=Q_{3}$. In [15] the constant $\lambda_{M}\left(V, P_{4}\right)$ has been calculated. Hence by Theorem 2.6 we have the formula for $\lambda_{M \otimes M}\left(P_{2,2}, P_{4,4}\right)$.

Example 3.9. In [10], it has been shown that if V is a two-dimensional, real normed space having unconditional basis v_{1}, v_{2} and $M \in \mathscr{L}(V)$ is such that $M v_{i}=d_{i} v_{i}$ then

$$
\begin{equation*}
\lambda_{M}(V) \leqslant\left(\left|d_{1}\right|+\left|d_{2}\right|+\sqrt{d_{1}^{2}-\left|d_{1} d_{2}\right|+d_{2}^{2}}\right) / 3 . \tag{3.5}
\end{equation*}
$$

Note that by [6],

$$
\lambda_{M}(V)=\lambda_{M}\left(V, L_{1}[-1,1]\right) .
$$

Also in [10, p. 174] the space V_{M} for which we have the equality in (3.5) has been described. Hence, by Theorem 2.6 for any M, N as above

$$
\begin{aligned}
& \lambda_{M \otimes N}\left(V_{M} \otimes_{\gamma} V_{N}, L_{1}[-1,1]^{2}\right) \\
& \quad=\lambda_{M}\left(V_{M}, L_{1}[-1,1]\right) \lambda_{N}\left(V_{N}, L_{1}[-1,1]\right)
\end{aligned}
$$

Now we restrict ourselves to the case of L_{p}-spaces. We start with
Definition 3.10 (see, e.g., [13, Definition 1.45, p. 27]). Let X, Y be Banach spaces. For $1 \leqslant p \leqslant \infty$ the p-nuclear norm of $z \in X \otimes Y$ is defined by

$$
\begin{equation*}
\alpha_{p}(z)=\inf \left\{\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p} a_{q}\left(y_{1}, \ldots, y_{n}\right): z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} . \tag{3.6}
\end{equation*}
$$

Here q is so chosen that $1 / p+1 / q=1$ and

$$
a_{q}\left(y_{1}, \ldots, y_{n}\right)=\sup \left\{\left(\sum_{i=1}^{n}\left|f\left(y_{i}\right)\right|^{q}\right)^{1 / q}: f \in S_{X^{*}}\right\} .
$$

If $q=\infty$, then

$$
a_{q}\left(y_{1}, \ldots, y_{n}\right)=\sup \left\{\max _{1 \leqslant i \leqslant n}\left|f\left(y_{i}\right)\right|: f \in S_{X^{*}}\right\} .
$$

By [13, Lemma 1.46, p. 27] the p-nuclear norm is a reasonable crossnorm. Observe that by [13, Lemma 1.44, p. 27] for any $B \in \mathscr{L}(Y)$

$$
a_{q}\left(B y_{1}, \ldots, B y_{n}\right) \leqslant\|B\| a_{q}\left(y_{1}, \ldots, y_{n}\right) .
$$

Hence α_{p} is a uniform, reasonable crossnorm. By a result of [23] we have

$$
\begin{equation*}
L_{p}(S) \otimes_{\alpha_{p}} L_{p}(T)=L_{p}(S \times T), \tag{3.7}
\end{equation*}
$$

where S and T are finite measure spaces. This enables us to apply Theorem 2.6 in the case of L_{p}-spaces. Until the end of this section S will stand for a finite separable measure space and let for every $n \in \mathbb{N},(S)^{n}$ be a partition of S. Without loss, we can assume that each $Z \in(S)^{n}$ is a finite sum of elements from $(S)^{n+1}$. Let X_{n} be the space spanned by characteristic functions of the sets from $(S)^{n}$. Hence $X_{n} \subset X_{n+1}$. We can choose $(S)^{n}$ in such a way that $L_{p}(S)=\operatorname{cl}\left(\cup_{n=1}^{\infty} X_{n}\right)$ for $1 \leqslant p<\infty$. Note that, by Jensen's inequality for every $n \in \mathbb{N}$, a projection $P_{n} \in \mathscr{P}\left(L_{p}(S), X_{n}\right)$ defined by

$$
\begin{equation*}
P_{n} x=\sum_{Z \in(S)^{n}}\left(\int_{Z} x(s) d \mu(s) / \mu(Z)\right) \chi_{Z} \tag{3.8}
\end{equation*}
$$

has norm one.

Lemma 3.11. If $f \in X_{n}$ and $g \in L_{p}(S)$ then

$$
\int_{S} f(t) g(t) d \mu(t)=\int f(t)\left(P_{k} g\right)(t) d \mu(t)
$$

for any $k \geqslant n$.
Proof. Note that for $k \geqslant n$

$$
\begin{aligned}
& \int_{S} f(t)\left(P_{k} g\right)(t) d \mu(t) \\
&=\int_{S}\left\{\sum_{Z \in(S)^{k}}\left[\int_{Z} g(s) d \mu(s) / \mu(Z)\right]\left(\chi_{Z}\right)(t)\right\} f(t) d \mu(t) \\
&=\sum_{Z \in(S)^{k}}\left(\int_{Z}\left[\int_{Z} f(s) g(s) d \mu(s) / \mu(Z)\right]\left(\chi_{Z}\right)(t) d \mu(t)\right) \\
&=\sum_{Z \in(S)^{k}} \int_{Z} g(s) f(s) d \mu(s)=\int_{S} f(t) g(t) d \mu(t),
\end{aligned}
$$

as required.

Lemma 3.12. Let f_{1}, \ldots, f_{k} be linearly independent, simple, measurable functions on S. Fix $1<p<\infty$. Let $V=\bigcap_{i=1}^{k} \operatorname{ker}\left(f_{i}\right)$, where $\operatorname{ker} f_{i}$ denotes the kernel of f_{i}. Put

$$
\begin{equation*}
V_{n}=V \cap X_{n} . \tag{3.9}
\end{equation*}
$$

Then

$$
\lambda\left(V, L_{p}(S)\right)=\lim _{n} \lambda\left(V_{n}, L_{p}(S)\right)
$$

Proof. Let $P \in \mathscr{P}\left(L_{p}(S), V\right)$. Take $Q_{n}=P_{n} \circ P$. Since f_{i} are simple functions, modifying X_{n}, if necessary, we can assume that $f_{i} \in X_{n_{o}}$ for $i=1,2, \ldots, k$. By Lemma 3.11, for any $x \in L_{p}(S),\left(P_{n} \circ P\right) x \in V_{n}$ for $n \geqslant n_{o}$. Since for any $x \in V_{n}, Q_{n} x=x, Q_{n} \in \mathscr{P}\left(L_{p}(S), V_{n}\right)$. Hence, since $\left\|P_{n}\right\|=1$,

$$
\lim _{n} \sup \lambda\left(V_{n}, L_{p}(S)\right) \leqslant \lambda\left(V, L_{p}(S)\right) .
$$

To prove the converse let $L_{n} \in \mathscr{P}\left(L_{p}(S), V_{n}\right)$ be a minimal projection and let $\left(x_{k}\right)$ be a basis of $X=\bigcup_{n=1}^{\infty} X_{n}$. Since $1<p<\infty$, by the diagonal
argument and the Šmulian Theorem, we can assume that for fixed $k, L_{n} x_{k}$ converges weakly to the element which we denote by $P x_{k}$. Hence for any $x \in X$

$$
\begin{aligned}
\|P x\| & =\left\|P\left(\sum_{i=1}^{l} a_{i} x_{i}\right)\right\|=\left\|\lim _{n} L_{n} x\right\| \\
& \leqslant \liminf _{n}\left\|L_{n} x\right\| \leqslant \liminf _{n} \lambda\left(V_{n}, L_{p}(S)\right)\|x\| .
\end{aligned}
$$

Consequently, by the density of X in $L_{p}(S)$, we can extend P onto all of $L_{p}(S)$. By the Mazur theorem, $P x \in V$ for any $x \in X$, and $P v=v$ for any $v \in \bigcup_{n=1}^{\infty} V_{n}$. By Lemma 3.11, $\operatorname{cl}\left(\bigcup_{n=1}^{\infty} V_{n}\right)=V$. Hence $P \in \mathscr{P}\left(L_{p}(S), V\right)$ and consequently,

$$
\lambda\left(V, L_{p}(S)\right) \leqslant \liminf _{n} \lambda\left(V_{n}, L_{p}(S)\right),
$$

which completes the proof.

Theorem 3.13. Let $f_{1}, \ldots, f_{k}\left(g_{1}, \ldots, g_{l}\right.$ resp.) be a collection of linearly independent, simple measurable functions on S (T resp.). Fix $1<p<\infty$. Put $V=\bigcap_{i=1}^{k} \operatorname{ker}\left(f_{i}\right)$ and $W=\bigcap_{i=1}^{l} \operatorname{ker}\left(g_{i}\right)$. Then

$$
\lambda\left(\mathrm{cl}(V \otimes W), L_{p}(S) \otimes_{\alpha_{p}} L_{p}(T)\right)=\lambda\left(V, L_{p}(S)\right) \lambda\left(W, L_{p}(T)\right) .
$$

Proof. For simplicity, let $U=L_{p}(S) \otimes_{\alpha_{p}} L_{p}(T)$ and $Z=\operatorname{cl}(V \otimes W)$, where the closure is taken with respect to the α_{p}-norm. Without loss, we also can assume that $S=T$. Let $Q_{1} \in \mathscr{P}\left(L_{p}(S), V\right)$ and $Q_{2} \in \mathscr{P}\left(L_{p}(S), W\right)$ be minimal projections. (By [14], minimal projections exist in our case.) Since $Q_{1} \otimes_{\alpha_{p}} Q_{2} \in \mathscr{P}(U, Z)$ and α_{p} is a uniform crossnorm,

$$
\lambda(Z, U) \leqslant \lambda\left(V, L_{p}(S)\right) \lambda\left(W, L_{p}(S)\right)
$$

To prove the converse, suppose that

$$
\begin{equation*}
\lambda(Z, U)<\lambda\left(V, L_{p}(S)\right) \lambda\left(W, L_{p}(S)\right) \tag{3.10}
\end{equation*}
$$

Let $Q \in \mathscr{P}(U, Z)$ be a minimal projection. Without loss, we can assume that the spaces X_{n} are so chosen that f_{j} and $g_{i} \in X_{n_{o}}$ for $j=1, \ldots, k$ and $i=1, \ldots, l$. Put for $n \in N$

$$
\begin{equation*}
L_{n}=\left(P_{n} \otimes_{\alpha_{p}} P_{n}\right) \circ Q \tag{3.11}
\end{equation*}
$$

Note that, by Lemma 3.11, for any $x \in U$ and $n \geqslant n_{o} L_{n} x \in W_{n}$ (see (3.9)). Also for any $z \in V_{n} \otimes W_{n}, L_{n} z=z$. This shows that $L_{n} \in \mathscr{P}\left(U, V_{n} \otimes W_{n}\right)$. By (3.10), since $\left\|P_{n} \otimes_{\alpha_{p}} P_{n}\right\| \leqslant\left\|P_{n}\right\|^{2}=1$,

$$
\begin{equation*}
\lambda\left(V_{n} \otimes W_{n}, U\right) \leqslant \lambda(Z, U)<\lambda\left(V, L_{p}(S)\right) \lambda\left(W, L_{p}(S)\right) \tag{3.12}
\end{equation*}
$$

By Theorem 2.6 applied to the α_{p}-norm and Lemma 3.12,

$$
\begin{aligned}
\lim _{n} \lambda\left(V_{n} \otimes W_{n}, U\right) & =\lim _{n}\left(\lambda\left(V_{n}, L_{p}(S)\right) \lambda\left(W_{n}, L_{p}(S)\right)\right) \\
& =\lambda\left(V, L_{p}(S)\right) \lambda\left(W, L_{p}(S)\right),
\end{aligned}
$$

a contradiction with (3.12). The proof is complete.
Since the space $L_{p}(S) \otimes_{\alpha_{p}} L_{p}(T)$ is linearly isometric to $L_{p}(S \times T)$, Theorem 3.13 permits us to calculate or estimate the relative projection constant for a class of subspaces of $L_{p}(S \times T)$ of infinite dimension and codimension provided we know the value or estimate for $\lambda\left(V, L_{p}(S)\right)$ and $\lambda\left(W, L_{p}(T)\right)$. Note that in [16] the relative projection constant onto any hyperplane of $L_{p}[0,1]$ has been calculated. In fact, by a result of Rolewicz (see [21, Theorem II.7.5, p. 83; 26]), since $L_{p}[0,1]$ is an almost isotropic space, the relative projection constant onto any hyperplane is the same and it is equal to

$$
\begin{equation*}
\max _{t \in[0,1]}\left(t^{p-1}+(1-t)^{p-1}\right)^{1 / p}\left(t^{q-1}+(1-t)^{q-1}\right)^{1 / q}, \tag{3.13}
\end{equation*}
$$

where q is so chosen that $1 / p+1 / q=1$. Also in [17] it has been shown that the number from (3.13) is a lower bound of the relative projection constant of any rich subspace of $L_{p}[0,1]$. Note that by [17, Theorem 2], any subspace of finite codimension in $L_{p}[0,1]$ is rich.

At the end of this paper we present a method of constructing various uniform crossnorms on $X \otimes Y$.

Proposition 3.14. Let $n \in \mathbb{N}$ and let $\|\cdot\|_{n}$ be a norm on \mathbb{R}^{n} satisfying the order preserving condition, i.e., $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n} \leqslant\left\|\left(y_{1}, \ldots, y_{n}\right)\right\|_{n}$ provided $\left|x_{i}\right| \leqslant\left|y_{i}\right|$ for $i=1, \ldots$, . If $\alpha_{1}, \ldots, \alpha_{n}$ are uniform crossnorms on $X \otimes Y$ then a function

$$
\alpha(z)=\left\|\left(\alpha_{1}(z), \ldots, \alpha_{n}(z)\right)\right\|_{n} /\|(1,1, \ldots, 1)\|_{n}
$$

is a uniform crossnorm on $X \otimes Y$.
The proof of Proposition 3.14 is straightforward, so we omit it.

Remark 3.15. By Theorem 2.7, all the results from Section 3 concerning the tensor product of two Banach spaces hold true for the case of the tensor product of n Banach spaces X_{1}, \ldots, X_{n}.

ACKNOWLEDGMENT

The author expresses his gratitude to Dr. Bruce L. Chalmers for many fruitful discussions concerning the subject of this paper.

REFERENCES

1. J. Blatter and E. W. Cheney, Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura Appl. 101 (1974), 215-227.
2. B. L. Chalmers and G. Lewicki, Minimal projections onto some subspaces of $l_{1}^{(n)}$, Funct. Approx. 26 (1998), 85-92.
3. B. L. Chalmers and G. Lewicki, Minimal projections onto symmetric subspaces of $l_{1}^{(n)}$, in preparation.
4. B. L. Chalmers and F. T. Metcalf, Determination of a minimal projection from $C[-1,1]$ onto the quadratics, Numer. Funct. Anal. Optim. 11 (1990), 1-10.
5. B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in L^{1}, Trans. Amer. Math. Soc. 329 (1992), 289-305.
6. B. L. Chalmers and F. T. Metcalf, A simple formula showing that L^{1} is a maximal overspace for two-dimensional real spaces, Ann. Polon. Math. 56 (1992), 303-309.
7. B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Oper. Theory 32 (1994), 31-46.
8. B. L. Chalmers and F. T. Metcalf, Construction of minimal projections, in "Approximation Theory, VIII" (C. K. Chui and L. Schumaker, Eds.), pp. 119-127, Academic Press, New York, 1995.
9. B. L. Chalmers and F. T. Metcalf, The minimal projection from L^{1} onto π_{n}, in "Stochastic Process and Functional Analysis" (Goldstein, Gretsky, and Uhl, Eds.), pp. 61-69, Dekker, New York, 1996.
10. B. L. Chalmers and B. Shekhtman, Extensions constants of unconditional two-dimensional operators, Linear Algebra Appl. 240 (1996), 173-182.
11. E. W. Cheney and C. Franchetti, Minimal projections in L_{1} spaces, Duke Math. J. 43 (1976), 501-510.
12. E. W. Cheney and C. Franchetti, Minimal projections in tensor-product spaces, J. Approx. Theory 41 (1984), 367-381.
13. E. W. Cheney and W. A. Light, "Approximation Theory in Tensor Product Spaces," Lecture Notes in Math., Vol. 1169, Springer-Verlag, Berlin, 1985.
14. E. W. Cheney and P. D. Morris, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61-76.
15. J. D. Fisher, "Minimal-Norm Extensions," Thesis, University of California, Riverside, 1994.
16. C. Franchetti, The norm of minimal onto hyperplanes in $L^{p}[0,1]$ and the radial constant, Boll. Un. Mat. Ital. 7 (1990), 803-821.
17. C. Franchetti, Lower bounds for the norms of projections with small kernels, Bull. Austral. Math. Soc. 46 (1992), 507-511.
18. G. Lewicki, Minimal projections onto subspaces of $l_{\infty}^{(n)}$ of codimension two, Collect. Math. 44 (1993), 167-179.
19. G. Lewicki, Best approximation in spaces of bounded linear operators, Dissertationes Math. 330 (1994).
20. G. Lewicki, Minimal projections onto two dimensional subspaces of $l_{\infty}^{(4)}$, J. Approx. Theory 88 (1997), 92-108.
21. W. Odyniec and G. Lewicki, "Minimal Projections in Banach Spaces," Lecture Notes in Math., Vol. 1149, Springer-Verlag, Berlin, 1990.
22. A. Pełczynski, Geometry of finite dimensional Banach spaces and operator ideals, in "Notes in Banach Spaces" (H. E. Lacey, Ed.), Univ. of Texas Press, Austin/London, 1980.
23. A. Persson, On some properties of p-nuclear and p-integral operators, Studia Math. 33 (1969), 213-222.
24. K. Petras, Duality and lower bound for relative projection constant, J. Approx. Theory $\mathbf{8 1}$ (1995), 104-119.
25. M. Prophet, Codimension one minimal projections onto the quadratics, J. Approx. Theory 85 (1996), 27-42.
26. S. Rolewicz, On projections on subspaces of codimension one, Studia Math. 44 (1990), 17-19.

[^0]: * Supported by Grant KBN 2 P03A 03610.

